If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+41X+86=0
a = 1; b = 41; c = +86;
Δ = b2-4ac
Δ = 412-4·1·86
Δ = 1337
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(41)-\sqrt{1337}}{2*1}=\frac{-41-\sqrt{1337}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(41)+\sqrt{1337}}{2*1}=\frac{-41+\sqrt{1337}}{2} $
| 2(a-8)+7=5(a-2)-2a-19 | | 3r–2=1 | | 5/10=3/h | | 3+-3t=15 | | F(x)=2^2+4 | | 4(-6)=4(-6p+8) | | 16x+12x2=51 | | 13x-11=54 | | (3x+60)+5x=360 | | 5(5-2b)=3(1-4b) | | 4m+6=5m+2 | | 175=80+(10+7)w | | Y=20-7x/20 | | 2+y/3=1 | | 42-10+3w=59 | | X^2-3x^2-10x=0 | | 12=2x+8=22 | | 1/2(4x+6)=21 | | 6x+5=3x−10 | | 155=95+(10+6)w | | −5x+4=−x+10 | | 9x+24=-3x-36 | | -50=2(5-3y( | | 3/5×w=12/25 | | 14.5=4.6x | | x+(x-10000)+(x-15000)=424667 | | 8(x+3)=4(-3x-4) | | 5r-3r+6=19 | | (5x+45)+4x=360 | | 8(n-1)=6n+4+24 | | 2/5n=-1/10 | | -8(1-6x)=8(6x+8) |